
INTRODUCTION

Studies of predatory behavior in vipers have
revealed two strategies. In one, the snake strikes and
holds the struggling prey in its jaws (Chiszar et al.,
1989; Chiszar and Radcliffe, 1989); in another, the
snake strikes and immediately releases the enveno-
mated prey, allowing it to wander from the site of
attack, and follows the trail deposited by the prey
(Klauber, 1956; Kardong, 1986). In the latter, the strike
is followed by a pronounced elevation rate of tongue-
flicking coupled with searching movements of the
snake’s head, collectively called strike-induced
chemosensory searching (SICS; Dullemeijer, 1961;
Chiszar et al., 1977, 1991). When the snake contacts the
trail left by the departing mouse, tongue-flicks are
restricted to the trail area, and the snake moves
methodically along the trail until the prey carcass is
discovered (Burghardt, 1970; Golan et al., 1982;
Diller, 1990; Halpern, 1992). These behaviors have
been studied in rattlesnakes that feed on rodents, but the
same pattern was seen with lizard prey when a lizard
managed to extricate itself from the jaws of a snake.

For example, Prairie Rattlesnakes (Crotalus
viridis) frequently prey upon lizards early in life,
consume neonatal rodents opportunistically, and later
shift to adult rodents. Lizards are generally held
whereas adult rodents are released, but an occasional
lizard manages to escape after envenomation (Chiszar
et al., 1993). Further, SICS and trail-following were
seen in these cases, much as they occurred with adult
rodent prey. The predatory strike triggers subsequent
searching behaviors that generally do not occur unless
a successful (envenomating) strike has been delivered;
thus, a strong sequential dependency exists between
striking prey and following the prey’s post-strike trail
(Cooper, 1989, 1993, 1994; Cooper et al., 1989, 1994).

Cottonmouths (Agkistrodon piscivorus), in con-
trast, exhibited an intermediate pattern of behavior
when feeding upon adult rodents (O’Connell et al.,
1981). Striking led to increased tongue-flicking and
searching movements (Chiszar et al., 1985), but they
found and followed rodent trails even if they had not
struck (Chiszar et al., 1986). Thus, SICS was not a
prerequisite for trail following behavior as it was in
rattlesnakes (see Kardong, 1982). Copperheads
(Agkistrodon contortrix) are closely related to A.
piscivorus and share dietary habits (Gloyd and
Conant, 1990), and might be expected to behave like
their congeners in trail-following experiments. The
purpose of this study is to assess this prediction.

Experiment I
Methods.—Six adult A. contortrix were maintained

in individual cages (L32 x W61.5 x H31 cm) and
observed in two conditions. In condition NS (“no
strike”) an adult mouse (Mus musculus; freshly eutha-
nized by cervical dislocation) was suspended into the
cage for 3 sec, but held out of striking range (about 15
cm from the snake’s snout). The mouse was removed
and tongue-flicks were counted for the next 30 min. In
condition S (“strike”), the snake was permitted to
strike the euthanized mouse after the 3 sec presenta-
tion; otherwise, this condition was exactly like the
previous one. Similar to rattlesnakes (Kardong, 1986),
A. contortrix always struck and immediately released
rodent prey. Three snakes received condition NS first
and condition S one week later; the remaining snakes
received the reverse order. Snakes were deprived of
food for one week prior to trials. They had been accus-
tomed to striking and eating euthanized mice; hence,
the procedures used in this experiment were similar to
those for a normal feeding session. Tongue-flicks were
recorded for a 10 min baseline (pre-test) period prior
to rodent presentations.

Results.—Table 1 shows that baseline (pre-test)
rates of tongue-flicking were low and that the two
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conditions did not differ significantly during the base-
line period. Hence, snakes were quiescent prior to
rodent presentations. After these presentations the rate
of tongue-flicking was significantly higher in condi-
tion S than in condition NS, revealing that SICS
occurred in A. contortrix. Outcomes of student’s t-tests
for paired comparisons are shown in Table 1.

Discussion.—Although the magnitude of SICS
observed in the A. contortrix was small compared with
effects seen in rattlesnakes, the difference between the
NS and S conditions was significant and comparable
to the difference seen in A. piscivorus (Chiszar et al.,
1985). The next step was to observe A. contortrix in a
trail-following situation after NS and S presentations
of rodent prey.

We performed an experiment under conditions
comparable to those used with C. viridis, but discov-
ered that A. contortrix would not move from their
starting positions. The snakes would strike in condi-
tion S and a high rate of tongue-flicking would follow,
but they would not venture out of their resting places
to search for the trail that was only a few cm away.
In similar experiments with Lower California
Rattlesnakes (Crotalus enyo), we noticed that they
moved toward or along trails only when cover was
available (Duvall and Chiszar, 1990). When no cover
objects were present in the trailing compartment,
individuals of C. enyo stayed in their starting locations,
much like A. contortrix appeared to do. In order to
assess whether or not cover was a critical precondition
for trail-following behavior in A. contortrix, experi-
ment II was performed.

Experiment II
Methods.—The subjects, cages, and maintenance

conditions were the same as those in experiment I.
The trailing apparatus was a glass terrarium (L90 x
W45 x H43 cm) divided by a black PlexiGlas® partition
into two compartments, one L15 x W45 x H43 cm, the
other L75 x W45 x H43 cm. The smaller compartment
contained a paper floor cover and a vessel filled with

water, and a snake was allowed to live there for one
week prior to commencement of trials. The larger
compartment contained a paper floor cover on which
a meandering trail was deposited by dragging a
euthanized mouse between a pair of parallel lines 4 cm
apart. The trail began at the black PlexiGlas® partition
and ended at a rock on the opposite side of the large
compartment. Two identical rocks were positioned at
opposite ends of the large compartment, each near a
corner. The trail ended at one of these rocks (randomly
selected prior to each trial by the flip of a coin). The
euthanized mouse used to make the trail was placed
behind the rock, with the trail leading to the rock,
around it, and ending at the carcass.

Each subject was observed in two conditions,
both involving a strike delivered at a freshly eutha-
nized mouse that was suspended into the snakes’ liv-
ing compartment, and then used to make a trail. In
condition NC, the trailing compartment was empty
except for the paper floor covering, the trail, and the
two rocks in corners opposite the black PlexiGlas®

partition. In condition C, the trailing compartment
contained five additional rocks, two sticks, and a
handful of dried leaves. These items were arranged
randomly in the compartment, but not directly on the
trail, and were more-or-less distributed equally
throughout the trailing compartment. Hence, a snake
could move along the trail and remain within 10–15
cm of cover. Further, it was possible for a snake to
have its head on the trail while the posterior half of
its body contacted cover.

After a snake struck a mouse and a trail was
deposited, the black PlexiGlas® partition was
removed, giving the snake access to the trailing com-
partment. During the next 30 min or until the snake
found the mouse, whichever occurred first, we
recorded the time spent on the trail (i.e., the number of
sec that the snake’s head was between the trail
boundary lines). When a snake found the carcass
within 30 min, we recorded the number of sec
between the start of the trial and the moment the snake
made contact with the carcass. The snake was per-
mitted to ingest the carcass before returning to the
living compartment or its home cage. When a snake
did not locate the carcass, a score of 1800 sec was
assigned as its latency to contact the prey; and, the
prey was moved toward the snake at the end of the
trial. In order to keep all snakes on the same feeding
schedule, the snake was allowed to ingest the carcass
to verify that it was hungry and willing to eat. All
snakes ate.
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Table 1. Mean rates of tongue-flicking per min (± SE) in six
adult Copperheads (Agkistrodon contortrix) in experiment I.
NS = No strike; S = strike; * = P < 0.05. See text for explanation
of experimental procedures.

Condition Pre-test (baseline) Post-test

NS 5.3 (5.1) 1.0 (0.7)

S 0.0 (0.0) 17.9 (5.4)

t-test (df = 5) 1.04 (ns) 3.44*



Each subject received both conditions with one
week separating the trials. Thus, the snakes were
under one week of food deprivation at the start of a
trial. Three snakes received condition NC followed by
condition C, and the remaining snakes received the
reverse order.

Results.—Table 2 presents five measures of trail-
following behavior for each of the two conditions,
along with associated inferential statistics. Subjects
performed better when cover was available than when
it was absent. In condition NC, only one snake located
the mouse carcass within 30 min, and this occurred
not by following the trail but by moving along the
walls of the trailing compartment. Little time was
spent on the trail in condition NC. In condition C, all
snakes found the mouse carcass in less than seven
min., and they all moved along the trail. 

Discussion.—Accordingly, we conclude that the
presence of cover is required for A. contortrix to
exhibit trail-following behavior. Further, we interpret
this finding as a reflection of the presence in captivity
of behavioral predispositions characteristic of preda-
tory tactics in nature. The alternative interpretation
would be that captive maintenance induced this
psychological dependence on cover, but we reject this
view because the snakes were acclimated and generally
undisturbed by human presence or other stimuli in
captivity. Observing cover-dependent behavior in
A. contortrix appears most consistent with our first
interpretation. Research along these lines would be
useful in identifying traits that are influenced by
captivity, and might constitute problems for captive
snakes released into natural habitats. 

The main implication of experiment II is that cover
must be provided in the trailing compartment of our
apparatus. Another experiment (experiment III) was
performed to assess the extent to which SICS is a
critical determinant of trail-following in A. contortrix.
All tests wereare conducted with cover items amply
provided in the trailing compartment.

Experiment III
Methods.—To establish the presence or absence of

a connection between SICS and trail-following
behavior, an experiment containing four conditions is
necessary (Golan et al., 1982). We must measure
snake response to trails after S and NS presentations
of rodent prey, as well as when no trail is present in the
apparatus. In order to verify trail following, we must
show stronger responses to the trail area (i.e., the
space between the parallel lines that form borders)
when a chemical trail (T) is present than when one is
absent (NT), and to assess the effect of striking prey,
the differences in snake response to NT vs T must be
compared after NS and S presentations of rodent prey.
If S presentations lead to trail following while NS
presentations do not, as is the case for rattlesnakes,
then the NT vs T difference will be large after S pre-
sentations and small or non-significant after NS
presentations. Conversely, if equal intensities of trail
following occur after NS and S presentations, as is the
case for A. piscivorus, then the NT vs T difference will
be equal after these presentations (Chiszar et al.,
1986). In short, we must test the significance of the
interaction between NS vs S and NT vs T.

The six subjects, apparatus, and cover objects used
in experiments I and II were used here. Snakes
received four trials: NS-NT, NS-T, S-NT, and S-T. The
NS and S treatments were like those described in
experiment I, except that the snake was in the living
compartment of the trailing apparatus rather than in its
home cage. Deposition of the trail was done as in
experiment II, except that a non-envenomated mouse
was used to make trails in order to avoid confounding
NS vs S with quality of trail (i.e., envenomated vs
nonenvenomated). In the case of NT, a non-enveno-
mated mouse was moved through the air about six cm
above the trail area and placed behind one of the
terminal rocks.

We recorded the same measures of trail-following
behavior as in experiment II. Each snake lived in the
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% snakes Mean time on Mean time to find Mean % time Mean % time on trail 
Condition locating mouse trail (sec) mouse (sec) on trail from first contact

No Cover 17 (15.2) 19.2 (14.2) 1560 (196.0) 2.7 (2.3) 5.0 (3.2)

Cover 100 (0.0) 98.3 (26.0) 372 (54.6) 26.4 (6.9) 38.0 (8.4)

t-test (df = 5) P = 0.03 2.24 4.88** 2.80* 2.95*
(binomial test)

Table 2. Mean values on five measures of trailing behavior (± SE) in six adult Copperheads (Agkistrodon contortrix) in experiment II.
+ = 0.10 > P > 0.05; * = P < 0.05; ** = P < 0.001. See text for experimental procedures.



apparatus for four weeks, receiving one trial per week.
If a snake began ecdysis, the animal was allowed to
remain undisturbed in the living compartment until
the old skin was shed before receiving the next trial.
The snake was fed after every trial, either by finding
and eating the mouse hidden in the trailing compart-
ment, or by offering the mouse to the snake at the end
of the trial. This procedure allowed us to conclude that
snakes were hungry and ready to eat on every trial,
and that they remained at the same level of food
deprivation (1 wk) prior to each trial.

Results.—Five of six snakes found the hidden
mouse in the S-T condition, whereas only one of six
did so in each of the other conditions (see Table 3),
indicating that Copperheads used chemical trails only
after striking prey. This inference was also strongly
justified by most of the other measures shown in
Table 3. 

Discussion.—The time to find the mouse was
significantly less in condition S-T than in the three
other conditions, which did not differ among them-
selves. This pattern of results gave rise to significant
interaction between NS vs S and NT vs T. Inferential
statistics from 2 x 2 ANOVAs treating NS vs S and NT
vs T as repeated measures are presented in Table 3. In
these ANOVAs, three error terms involving subjects
(Subjects x NS vs S, Subjects x NT vs T, and Subjects
x NS vs S x NT vs T), each bearing 5 degrees of
freedom, did not differ from each other and were
pooled into a single error term with 15 degrees of
freedom (Hicks, 1964). The interaction between NS
vs S and NT vs T was significant for three of the four
ANOVAs reported in Table 3. Accordingly, we con-
clude that trail-following occurred after successful

predatory strikes were delivered to rodent prey but not
after NS presentations of prey.

GENERAL DISCUSSION
When A. contortrix preyed on rodents in these

experiments, they behaved much like rattlesnakes in
that (1) rodents were struck and released, (2) a high
level of chemosensory searching occurred following S
presentations of prey but not after NS presentations,
and (3) trail-following behavior was well-developed
and contingent upon the presence of a chemical trail,
and upon the prior delivery of a strike and activation
of SICS. Copperheads, therefore, resembled rodent-
feeding rattlesnakes more closely than their congener
A. piscivorus that followed trails whether or not
strikes were delivered (Chiszar et al., 1985, 1986). We
suggest that this difference between A. contortrix and
A. piscivorus is related to the natural diets of these
species. Although their diets overlap, A. piscivorus preys
on frogs and fish more consistently than A. contortrix,
which consumes more mammals (Gloyd and Conant,
1990). The strike-release-trail strategy appears to
characterize vipers that have no anatomical protection
to guard them from injury while holding a rodent after
an envenomating strike. Releasing the envenomated
rodent and following its trail is assumed to be a
strategy for avoiding costly damage to predator eyes,
pits, nostrils or other tissues. This strategy in A.
contortrix infers that this species depends upon
rodents to such a degree to select for rattlesnake-like
predatory behavior. Shine and Covacevich (1983)
made a similar argument in explaining the occurrence
of strike-release-trail behaviors in several Australian
elapid species of the genus Oxyuranus.
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Condition % snakes Mean time on Mean time to        % mean time % mean time on  
locating mouse trail (sec) locate mouse (sec) on trail trail from first contact

NS - NT 17   (15.2) 0.0   (0.9) 1040   (160) 0.0   (0.0) 0.0   (0.0)

NS - T 17   (15.2) 9.5   (9.5) 1130   (70) 1.2   (1.2) 2.0   (2.0)

S - NT 17   (15.2) 11.8   (7.5) 1170   (30) 1.1   (0.7) 2.0   (1.4)

S - T 83   (15.2) 43.2   (14.9) 630   (179) 11.4   (4.8) 16.8   (6.8)

FNSvsS; df = 1, 15 P = 0.06a 5.27* 4.98* 5.60* 6.00*

FNTvsT; df  = 1, 15 4.25+ 3.87+ 5.89* 6.02*

Finter.; df  = 1, 15 1.21 7.58* 4.81* 4.98*

Table 3. Mean values on five measures of trailing behavior (± SEM) on six adult Copperheads (Agkistrodon contortrix) in experiment III.
+ = 0.10 > P > 0.05; * P < 0.05. a = binomial test for comparison of each of the first three conditions with the last condition. See text for
experimental procedures.



It is possible that SICS and its association with
trail-following behavior evolved independently within
Agkistrodon, Crotalus, and Sistrurus, as apparently
happened within Viperidae and Elapidae (Schuett et
al., 1984; Chiszar et al., 1990; Shine and Covacevich,
1983; for convergence of predatory traits in Elapidae
and Viperidae, see Shine, 1980). It is also possible
these behavioral traits were well-developed in the
Agkistrodon-like ancestors of modern Agkistrodon
and Crotalus. Although trail-following has not been
studied in Old World vipers, they are well known to
exhibit SICS (Burghardt, 1970; Chiszar et al., 1982,
1999). Presuming that these snakes follow rodent
trails only after striking prey, then the conclusions will
be tempting (1) that the strike-release-SICS-trail
strategy was an ancestral condition developed before
emergence of New World vipers from their Old World
antecedents, and (2) that the pattern observed in A.
piscivorus represents a derived condition, probably
evolving as a result of decreased reliance on rodent prey.
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